Mode of arc extinction

- High resistance arc interruption
 - This method is used in DC CB and low and medium voltage AC CB

- Low resistance or zero point interruption
 - This method is used in HVAC CB

Let \(V_{arc} \) is the voltage required to establish arc

\[I_{arc} \text{ and } R_{arc} \text{ is the corresponding arc current and resistance} \]

Then \(V_{arc} \) is proportional to \(R_{arc} \) for a constant arc current

Therefore, \(V_{arc} \) can be increased by increasing arc resistance

Thus \(V_{arc} \) can is increased till it is more than system voltage across the contact

Hence arc is extinguished
The method of increasing arc resistance

- Lengthening the arc by means of arc runner [as resistance of arc is proportional to length]
- Splitting up the arc into a number of small arcs
- Cooling or arc: voltage required to maintain arc increases with the decrease of temperature.

Splitting up of an arc
Low resistance or zero point interruption

- For alternating current, the arc is vanished for a brief moment when the arc current goes zero
- The arc is extinguished at the ‘current zero’
- The contact space is de-ionized quickly by introducing fresh air or SF6 gas
- The dielectric strength is increased to such an extent that arc does not continue after current zero
- However arc may re-establish if dielectric strength of gap is less than the re-striking voltage

Low resistance or zero point interruption (Cont.....)

- In this case arc may continue another half cycle and may get extinguished in next current zero
- Therefore CB are designed such a way to provide a provision to remove the hot gases from the contact space immediately after the arc extinction so as to fill the contact space by fresh dielectric medium.
Classification of CB based on voltage level

<table>
<thead>
<tr>
<th>Name</th>
<th>Voltage rating of CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV CB</td>
<td>Up to 1000V</td>
</tr>
<tr>
<td>MV CB</td>
<td>Up to 33 KV</td>
</tr>
<tr>
<td>HV CB</td>
<td>Above 33KV</td>
</tr>
</tbody>
</table>

Classification of CB based on arc quenching medium [Ref : Table 2.1]

<table>
<thead>
<tr>
<th>Name</th>
<th>Voltage rating</th>
<th>Power rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air break CB [ACB] {air in atmospheric pressure}</td>
<td>Up to 600 V</td>
<td>5-15-35 MVA</td>
</tr>
<tr>
<td>Oil CB [OCB] {Bulk or tank oil}</td>
<td>12 KV</td>
<td>500 MVA</td>
</tr>
<tr>
<td>Minimum Oil CB [MOCB] {Dielectric oil}</td>
<td>33-245 KV</td>
<td>30000 MVA</td>
</tr>
<tr>
<td>Air Blast CB [ABCB] {Compressed air: 20kg/cm²}</td>
<td>245-400 KV</td>
<td>35000 MVA</td>
</tr>
<tr>
<td>SF₆ CB {SF₆ gas}</td>
<td>245-700 KV</td>
<td>35000-50000 MVA</td>
</tr>
<tr>
<td>Vacuum CB [VCB] {in vacuum}</td>
<td>11 KV</td>
<td>500 MVA</td>
</tr>
</tbody>
</table>
Air break Circuit Breaker

Oil Circuit Breaker (OCB)
Air Blast Circuit Breaker (ABCB)

SF₆ Circuit Breaker
Vacuum Circuit Breaker

What type of CB is this?
What type of CB is this?

Breaking current of a CB

- The rms value of current at the instant of contact separation of the CB is called breaking current.
- It is equal to the rms value of fault current in the transient period. Why?
- Expressed in KA.
Making current of a CB

- It is the rms value of current at the instant of a closing (making) of contacts of the CB on existing fault
- It is equal to the rms value of fault current in the sub-transient period. Why?